14 research outputs found

    Improved Left Ventricular Mass Quantification with Partial Voxel Interpolation – In-Vivo and Necropsy Validation of a Novel Cardiac MRI Segmentation Algorithm

    Get PDF
    Background—CMR typically quantifies LV mass (LVM) via manual planimetry (MP), but this approach is time consuming and does not account for partial voxel components - myocardium admixed with blood in a single voxel. Automated segmentation (AS) can account for partial voxels, but this has not been used for LVM quantification. This study used automated CMR segmentation to test the influence of partial voxels on quantification of LVM. Methods and Results—LVM was quantified by AS and MP in 126 consecutive patients and 10 laboratory animals undergoing CMR. AS yielded both partial voxel (ASPV) and full voxel (ASFV) measurements. Methods were independently compared to LVM quantified on echocardiography (echo) and an ex-vivo standard of LVM at necropsy. AS quantified LVM in all patients, yielding a 12-fold decrease in processing time vs. MP (0:21±0:04 vs. 4:18±1:02 min; pFV mass (136±35gm) was slightly lower than MP (139±35; Δ=3±9gm, pPV yielded higher LVM (159±38gm) than MP (Δ=20±10gm) and ASFV (Δ=23±6gm, both pPV and ASFV correlated with larger voxel size (partial r=0.37, pPV yielded better agreement with echo (Δ=20±25gm) than did ASFV (Δ=43±24gm) or MP (Δ=40±22gm, both pPV and ex-vivo results were similar (Δ=1±3gm, p=0.3), whereas ASFV (6±3g, P\u3c0.001) and MP (4±5 g, P=0.02) yielded small but significant differences with LVM at necropsy

    Geometry-independent inclusion of basal myocardium yields improved cardiac magnetic resonance agreement with echocardiography and necropsy quantified left-ventricular mass

    No full text
    ObjectivesLeft-ventricular mass (LVM) is widely used to guide clinical decision-making. Cardiac magnetic resonance (CMR) quantifies LVM by planimetry of contiguous short-axis images, an approach dependent on reader-selection of images to be contoured. Established methods have applied different binary cut-offs using circumferential extent of left-ventricular myocardium to define the basal left ventricle (LV), omitting images containing lesser fractions of left-ventricular myocardium. This study tested impact of basal slice variability on LVM quantification.MethodsCMR was performed in patients and laboratory animals. LVM was quantified with full inclusion of left-ventricular myocardium, and by established methods that use different cut-offs to define the left-ventricular basal-most slice: 50% circumferential myocardium at end diastole alone (ED50), 50% circumferential myocardium throughout both end diastole and end systole (EDS50).ResultsOne hundred and fifty patients and 10 lab animals were studied. Among patients, fully inclusive LVM (172.6±42.3g) was higher vs. ED50 (167.2±41.8g) and EDS50 (150.6±41.1g; both P<0.001). Methodological differences yielded discrepancies regarding proportion of patients meeting established criteria for left-ventricular hypertrophy and chamber dilation (P<0.05). Fully inclusive LVM yielded smaller differences with echocardiography (Δ=11.0±28.8g) than did ED50 (Δ=16.4±29.1g) and EDS50 (Δ=33.2±28.7g; both P<0.001). Among lab animals, ex-vivo left-ventricular weight (69.8±13.2g) was similar to LVM calculated using fully inclusive (70.1±13.5g, P=0.67) and ED50 (69.4±13.9g; P=0.70) methods, whereas EDS50 differed significantly (67.9±14.9g; P=0.04).ConclusionEstablished CMR methods that discordantly define the basal-most LV produce significant differences in calculated LVM. Fully inclusive quantification, rather than binary cut-offs that omit basal left-ventricular myocardium, yields smallest CMR discrepancy with echocardiography-measured LVM and non-significant differences with necropsy-measured left-ventricular weight

    Agreement of left ventricular mass in steady state free precession and delayed enhancement MR images: implications for quantification of fibrosis in congenital and ischemic heart disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Left ventricular mass (LVM) is used when expressing infarct or fibrosis as a percentage of the left ventricle (LV). Quantification of LVM is interchangeably carried out in cine steady state free precession (SSFP) and delayed enhancement (DE) magnetic resonance imaging (MRI). However, these techniques may yield different LVM. Therefore, the aim of the study was to compare LVM determined by SSFP and DE MRI in patients and determine the agreement with these sequences with ex vivo data in an experimental animal model.</p> <p>Methods</p> <p>Ethics committees approved human and animal studies. Informed written consent was obtained from all patients. SSFP and DE images were acquired in 60 patients (20 with infarction, 20 without infarction and 20 pediatric patients). Ex vivo MRI was used as reference method for LVM in 19 pigs and compared to in vivo SSFP and DE.</p> <p>Results</p> <p>LVM was greater in SSFP than in DE (p < 0.001) with a bias of 5.0 ± 6.7% in humans (r<sup>2 </sup>= 0.98), and a bias of 7.3 ± 6.7% (p < 0.001) in pigs (r<sup>2 </sup>= 0.83). Bias for SSFP and DE images compared to ex vivo LVM was -0.2 ± 9.0% and -7.7 ± 8.5% respectively.</p> <p>Conclusions</p> <p>LVM was higher when measured with SSFP compared to DE. Thus, the percentage infarction of the LV will differ if SSFP or DE is used to determine LVM. There was no significant difference between SSFP and ex vivo LVM suggesting that SSFP is more accurate for LVM quantification. To avoid intrinsic error due to the differences between the sequences, we suggest using DE when expressing infarct as a percentage of LVM.</p
    corecore